GROUND ASSISTANCE & ENERGY TRANSITION

White Paper

V 1.2

2

About CSAE

The Chambre Syndicale des Assistants en Escale (CSAE) brings together companies providing ground handling services to airlines and their customers at French airports. It also represents companies with similar activities: training, rental and maintenance of ramp equipment, refuelling, passenger transport and consultancy.

Its 25 members employ around 24,000 people in France.

CSAE is a member of the FNAM (Fédération Nationale de l'Aviation Marchande).

Didier Montégut, President of CSAE

For over 10 years, French ground handlers have been committed to the energy transition of their activities, in particular by electrifying their fleet of airport vehicles and ramp equipment.

The end of the health crisis has accelerated this transition, highlighting the importance of environmental issues in the expectations of our stakeholders (airlines, airports, authorities, etc.).

This guide is the result of more than a year's collective work by CSAE's Environment Commission. Its aim is to highlight the progress made in the energy transition of fleets, to set targets for 2030 and 2050 and to highlight best practices that can be generalised.

The key word here is collaboration. Collaboration on the one hand with manufacturers on the development of an offer adapted to airport needs; collaboration on the other hand with airports on the adaptation of the energy networks necessary to prepare for the arrival of these new technologies. All with the support of the regulatory authorities to guarantee the economic sustainability of this transition, in a sector that is still too little known to the regulators.

Together, we can make a real difference and contribute to reducing the environmental footprint of the aviation sector.

Enjoy your reading

3

CONTENTS

SUMMARY

1 - THE CURRENT SITUATION

Fleets of trackside equipment

Energy
 consumption
 New energies

- Cost-sharing models by type of energy
- The challenges of electricity pricing
- Benchmark of electricity costs in France and Europe
- Energy balances
- New technologies (summary)

2 - OBJECTIVES

Energy transition

-] Reducing emissions
- Conditions for achieving these objectives

3 - GOOD PRACTICE

- Substitutes for APU* (Auto Parts Unit)
- Electric recharging infrastructure
- Eco-use
- Re-motorisation of machinery
- Regeneration of lead batteries

4 - APPENDICES

Details of the

- functions of runway equipment
- New technologies for trackside equipment

SUMMARY GROUND HANDLERS, KEY PLAYERS IN THE DECARBONISATION OF GROUND OPERATIONS

Findings: An energy transition already underway by ground handlers

- CSAE's ground handlers operate more than **3,500 unregistered vehicles and runway equipment** needed to handle passengers and aircraft on the ground (i.e. around 50% of the total airport fleet).
- Until now, the greening of fleets has been focused on low-powered vehicles and equipment, and mainly on electric solutions. 43% of the fleet in operation today is clean (electric, hybrid, gas).
- The objectives are to reduce direct CO₂ emissions by 20% by 2030 (based on 2019) and to achieve 0 net emissions (direct and indirect) by 2050.

Solutions : Building on heterogeneous technological maturity

- In the short term, facilitate the use of already mature electric and gas technologies through purchase aid mechanisms, significant and coordinated investment programmes in energy supply infrastructures, and incentive-based energy costs, as is the case elsewhere in Europe. Transition solutions using HVO (hydrotreated vegetable oil), which is compatible with diesel engines, should also be considered.
- In the medium and long term, develop research into solutions for high-powered engines such as long-haul aircraft tractors (using hydrogen in particular), to further limit emissions when aircraft are taxiing.

Challenge: How can we accelerate this transition in a multi-stakeholder context?

Ground handlers must respond to the demands of airlines and airports by accelerating decarbonisation, particularly of high-powered vehicles and equipment, through new solutions that are economically and environmentally viable, while working with airports to develop the most appropriate energy supply infrastructures.

1-THE STATE OF PLAY GROUND SUPPORT EQUIPMENT FLEETS ENERGY CONSUMPTION NEW ENERGIES COST-SHARING MODELS, BENCHMARK ENERGY BALANCES NEW TECHNOLOGIES

FLEETS OF TRACKSIDE EQUIPMENT

Fleet of non-road ground support equipment operated in France in 2022 by 20 respondent companies (excluding the Air France and Aéroport de Paris fleets)

Machines Number of mac		s per energy source	Total number of	Share of electric
	Electric	Thermal	machines	vehicles
TRACTOR	1086	90	1176	92 %
RUGS	182	345	527	35%
FORKLIFT TRUCK	54	5	59	92 %
AIRCRAFT TRACTOR	20	244	264	8%
PASSENGER STAIRCASE	16	253	269	6%
LIFTING PLATFORM	4	209	213	2%
ACU	4	14	18	22%
WATER & WASTE TRUCK	4	29	33	12%
GPU	2	252	254	1%
PRM TRUCK	1	22	23	4%
OLEOSERVER	1	32	33	3%
REFUELLING TRUCK	1	6	7	14%
DEGIVREUSE		30	30	0%
ASU		38	38	0%
CATERING TRUCK		105	105	0%
TRANSPORTER		52	52	0%
BUS		53	53	0%
TRUCK FREIGHT		62	62	0%
TOTAL	1 375	1 841	3 220	43%

ENERGY CONSUMPTION

8

Consumption of non-road ground support equipment operated in France in 2022 by 20 respondent companies (excluding the Air France and Aéroport de Paris fleets)

Machines	RNG fuel consumption (Litres)	Share of fuel consumption	Electricity consumption (kWh)
BUS	1 259 830	16%	
GPU	1 199 888	15%	930
PUSH	1 133 295	15%	503 040
TRUCK FREIGHT	1 083 317	14%	
RUGS	970 033	12%	581 341
CATERING TRUCK	541 120	7%	
LOADER	424 442	5%	75 468
PASSENGER STAIRCASE	307 621	4%	3 420
TRACTOR	230 751	3%	5 089 342
OLEOSERVER	165 830	2%	24
WATER & WASTE TRUCK	149 895	2%	4 040
TRANSPORTER	94 527	1%	
PRM TRUCK	56 179	1%	15
ASU	56 123	1%	
ACU	54 292	1%	
DEGIVREUSE	28 459	0,4%	
REFUELLING TRUCK	12 321	0,2%	
ELEVATOR	1711	0,02%	8 640
Grand total	7 769 632 L		6,266,259 KWh

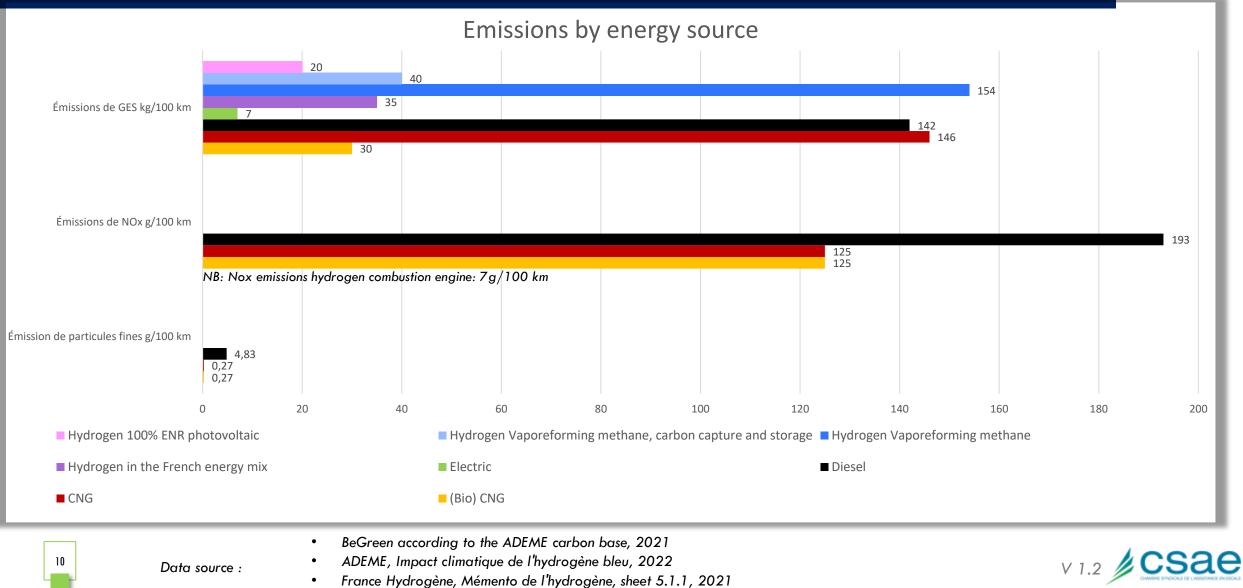
The power available for GSEs at airports will have to be increased by at least a factor of 10 to achieve the greening objective.

NEW ENERGIES - SOURCES

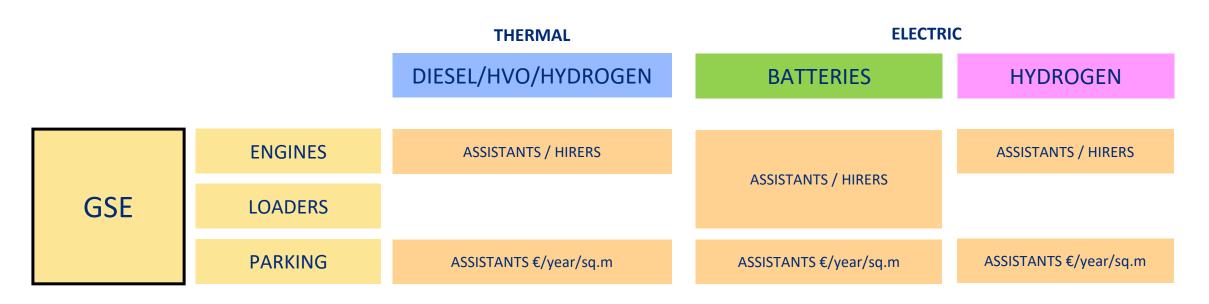
Airport vehicle and equipment fleets will gradually move towards renewable energies

Energy sources	Energy generated	Final consumption
Electricity : • Wind & Solar • Nuclear • Hydropower & Geothermal energy	ELECTRICITY HYDROGEN (electrolysis)	Electricity Hydrogen
		HVO**
Methane (CO capture) ₂ CO ₂ + electricity + H ₂ Vegetable oils/Animal fats	HYDROGEN (chemistry) SAF/efuel	CNG***
Biomass	EMAG*/HVO** BIOGAZ/H ₂ (thermolysis)	efuel/SAF

*Fatty acid methyl esters / ** Hydrotreated vegetable oil / *** Natural gas for vehicles


Airports will have to secure their energy supply sources according to :

- Local renewable energy sources and production capacity
 - Distribution networks near or at airports
 - Different energy prices



NEW ENERGIES - EMISSIONS

COST-SHARING MODELS BY TYPE OF ENERGY

	INFRASTRUCTURES	DISTRIBUTION STATIONS	NETWORKS	CHARGING STATIONS	DISTRIBUTION STATIONS
ENERGY	DISTRIBUTION	SERVICE PROVIDERS / AIRPORTS	AIRPORTS	SERVICE SUPPLIERS	SERVICE PROVIDERS / AIRPORTS
	CONSUMPTION	ASSISTANTS €/I & €/kg	ASSISTAN	TS €/kWh	ASSISTANTS €/kg

The electrification of trackside equipment involves significant additional costs compared with current combustion engines.

In France, ground handlers alone cannot bear all the costs associated with the electrification of ramp equipment:

- Hire or purchase of equipment (+30% on average compared with combustion equipment)
- The purchase of electricity (+45% in 2022 compared with 2020. Some airports plan to charge more per kW than the cost of RNG).
- **Purchase and installation of the distribution infrastructure** (final distribution lines, electrical cabinets, charge points, meters, etc.)
- **Rental of electrified parking spaces** and **parking areas** (with rates increasing by 50% to 85% on certain platforms)

This French pricing system is unique in Europe. Most airports charge a flat rate for overall energy consumption, taking into account the infrastructure, at pricing levels close to the free market.

BENCHMARK OF ELECTRICITY COSTS IN FRANCE AND EUROPE

	FRANCE	CDG	TLS	LYS	NCE	MRS	NTE
	ocation GSE only (€/m²/year)	36.41€	6,92 €	1,29 €	18,20 €	10,45 €	43,41 €
1	ilectricity bill (€/kWh/yeαr)	Variable portion of €0.207/kWh/year + fixed part of 71.16€ /KVA/year	0,398 €	0,480 €	0,440 €	0,611 €	0,384 €
	Provision of plugs/year	N/A	N/A	N/A	734 €	N/A	777 €

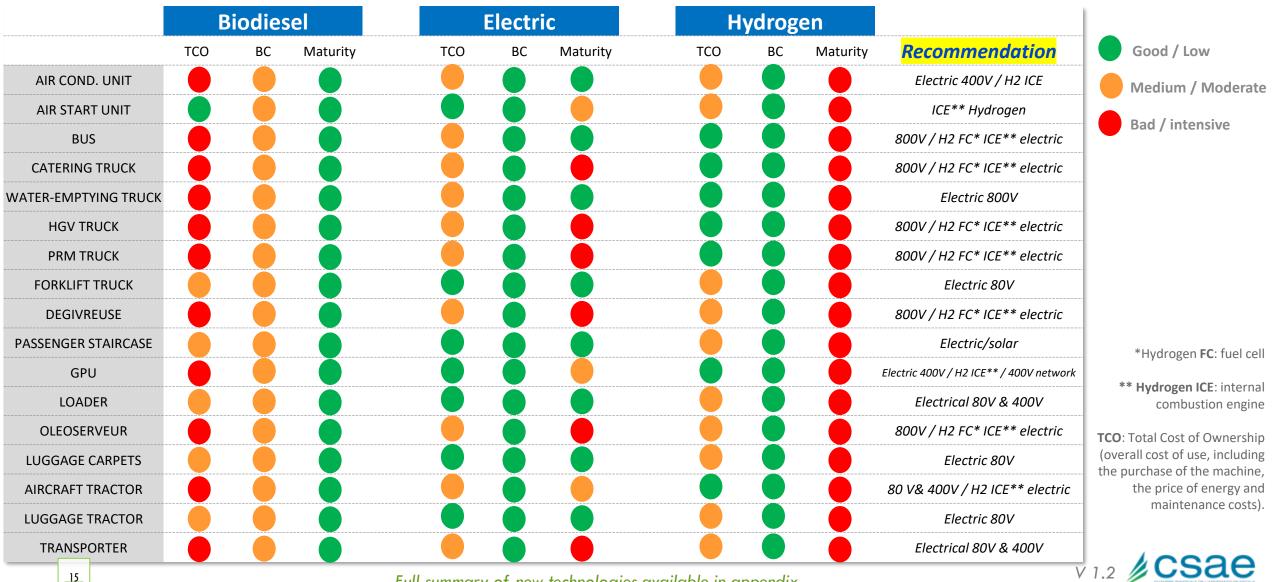
EUROPE	Dublin	Heathrow	Luton	Aena	BRU
Location GSE only (€/m²/year)	46 €	0€	0€	Rate per kW	
Electricity bill (€/kWh/year)	0€	0.446€*	0,484€	consumed. If no individual meter, application of a fixed rate per m ² .	Fixed portion between €0.023/kWh and €0.048/kWh

* Tariff including an infrastructure component

ENERGY BALANCES

Any full-cost pricing of electricity above €360/MWh will put the brakes on the electrification of runway equipment, compared with an energy cost of €2/I for neutral fuels such as HVO.

	GNR ICE ₁	DIESEL/HVO ICE ₁	ELECTRICITY BATTERIES	HYDROGEN ICE ₁	HYDROGEN FC
Quantity of energy / unit	11 kWh/l	11 kWh/l	1 kWh	33 kWh/kg	33 kWh/kg
Price per unit	1,5 €/l	2 €/I	0.36 €/kWh	6€/kg	8.5€/kg
Total return	35% (ICE)	35% (ICE)	70% (Batteries)	35% (ICE)	50% (FC)
Price/useful kWh ratio	0.39/kWh	0.52/kWh	0.51/kWh	0.52/kWh	0.51/kWh
Emission factor CO ₂	0.29 kg/kWh	0.29 kg/kWh 0.09 kg/kWh	0.07 kg/kWh	0.09 kg/kWh*** of electricity	0.09 kg/kWh*** of electricity
Carbon tax 100€/T	0.03 €/kWh	0.03 €/kWh 0.01 €/kWh			ombustion engine gen FC : fuel cells


* 70% decarbonation for HVO

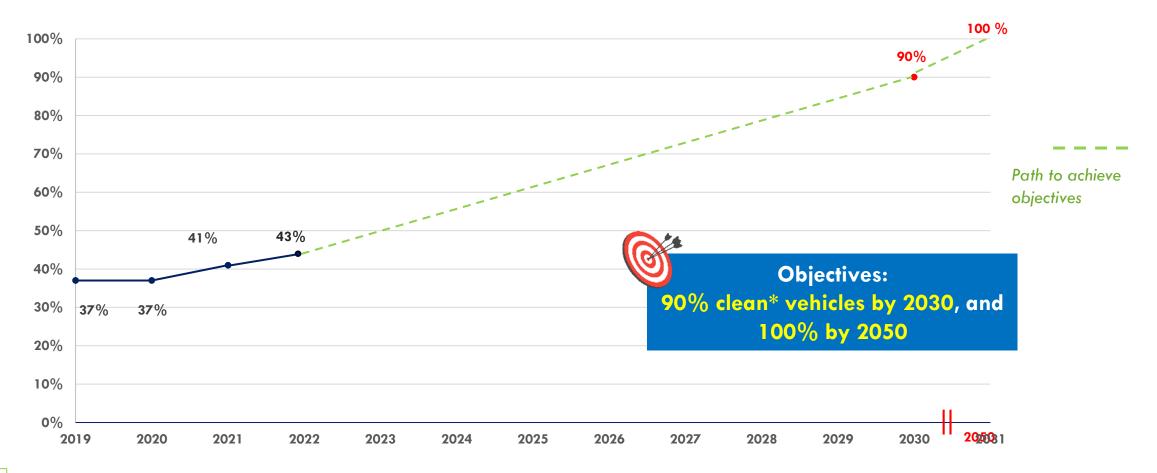
*** Low-carbon hydrogen 3 kg CO2 / kg H2

** 0.07 issues in France; 0.28 in the UK; 0.61 in Germany

NEW TECHNOLOGIES FOR ENERGY-DRIVEN RUNWAY MACHINES (SUMMARY)

Full summary of new technologies available in appendix

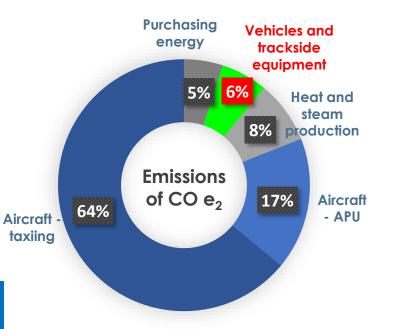
2-THE OBJECTIVES


ENERGY TRANSITION FOR FLEETS REDUCING EMISSIONS CONDITIONS FOR ACHIEVING THESE OBJECTIVES

ENERGY TRANSITION FOR FLEETS

Trend in the proportion of clean vehicles* since 2019 and targets for 2030/2050

* electric, hybrid, CNG, biogas, H₂, HVO


17

REDUCING EMISSIONS

- In the overall emissions balance for an airport hub, vehicles and ground support equipment accounted for :
 - Greenhouse gases: 6% of carbon dioxide emissions (CO₂), i.e. more than 21,000 tonnes of CO₂ equivalent.
 - Air quality: 5% of nitrogen oxide (NOx) emissions
- In 2022, greenhouse gas emissions linked to the combustion of fuel for runway equipment were 19,967 tonnes of CO₂ eq.
- Electrification in France with an emission factor of 0.07kg CO₂ /kWh would save 75% of the CO₂ emitted.

Objectives: Reduce direct CO₂ emissions by 20% by 2030 (baseline 2019) Achieve 0 net emissions (direct and indirect) by 2050 CO₂ eq. emissions from vehicles and ground support equipment account for 6% of airport emissions.

Source: ADEME, 2018, Breakdown of CO₂ equivalent emissions by emission category (11 airfields)

CONDITIONS FOR ACHIEVING THESE OBJECTIVES

- 1. Support for investment capacity to renew ground handling fleets and adapt airport infrastructures
- 2. Visibility of the deployment of electric (with associated power and surface area), gas or hydrogen recharging infrastructures at airports
- **3.** Sharing the costs of deploying infrastructure (chargers, distribution networks) and energy with airports and airlines

3-GOOD PRACTICE

ALTERNATIVE MEANS OF TRANSPORT ELECTRIC CHARGING INFRASTRUCTURE **ECO-DRIVING RE-ENGINING OF VEHICLES REGENERATION OF LEAD BATTERIES**

SUBSTITUTES FOR APU* (AUTO PARTS UNIT)

Description

- Reminder of the role of an APU: provides electricity, heating and air conditioning when the aircraft's main engines are shut down (passenger boarding and disembarkation, cleaning, maintenance, flight preparation, etc.). It is also needed to start the main engines.
- Fixed APU substitutes (preferred): 400 Hz cable, PCA (Pre-Conditioned Air). These resources are made available by the airports.
- Mobile substitutes (in case of non-operation of fixed installations) : GPU (Ground Power Unit) thermal, GPU battery, converter, ACU (Air Conditioning Unit), ASU (Air Strat Unit). These resources are made available by the ground handlers.

Benefits

- Reduced fuel consumption, resulting in lower greenhouse gas emissions, local pollutants and costs for airlines and assistants.
- Reduced aircraft cockpit congestion in the case of fixed substitutes, and reduced noise.

Key success factors

- Availability of alternative fixed infrastructure for aircraft positions in contact and offshore (power, distribution network)
- Investment capacity of assistants and airports ٠ **Partners** involved
- Airports, airlines, ground handlers

ELECTRIC RECHARGING INFRASTRUCTURE

Description

- Solution A: Installation of a small number of high-density (63A-125A) multi-voltage, multi-capacity rapid chargers: this type of charger enables different batteries to be charged on the same day and automatically adjusts its rating to the battery according to its state of charge. Charging takes between 30 minutes and 3 hours. These chargers are particularly suitable for equipment requiring high power levels, such as aircraft tractors, loaders or GPUs. For this type of charger, around 1 charger can be installed for every 4 machines. The prerequisite for this solution is the availability of high-power chargers at the airport, as well as the same plug connection standard (Euro CCS2 standard).
- Solution B: Installation of a large number of low-intensity, slow-charge chargers (16A-32A) dedicated to charging a single type of battery: this type of charger requires less power but more space to install the chargers. It allows the vehicles to be left on charge throughout the period of inactivity (at night, for example) for a full charge of between 8 and 15 hours. This type of charger is suitable for low-powered machines, such as baggage tractors or carpets. For this type of charger, around 1 charger can be installed for every 2 machines. This solution is currently the simplest to install and the most widespread at airports, but will have its limits when it comes to electrifying the most powerful ramp vehicles (buses, aircraft tractors, etc.).
- Solution C: Installation of on-board chargers directly on electric vehicles, enabling vehicles to be connected to an irregular network (voltage or power variations). The same machine can therefore be connected to different types of socket, depending on the one available nearby when its battery is low, for example. This solution involves the additional cost of adding the charger to the price of the machine.

A mix of these solutions, in consultation with the airports, should be considered to find the best match between the assistants' investment plan and the electrical capacity that the airport can offer.

Benefits

Reduced fuel consumption, greenhouse gas emissions and local pollutants for assistants

Key success factors

- Availability of surface area and electrical capacity at competitive energy costs
- Standardisation of connection standards (OCPP2.0 standard)

Partners involved

Airports, ground handlers, electricity suppliers

ECO-USE

Description

- Eco-driving module integrated into ramp attendant training, at the same time as training on driving equipment.
- Training content: modulating speed and anticipating obstacles, driving smoothly, encouraging the driver to turn off the ignition when stationary.

Benefits

- Reduced fuel consumption, greenhouse gas emissions and local pollutants for assistants.
- Improving runway safety on aprons.
- Reduced wear and tear on vehicles and machinery.

Key success factors

- Frequent involvement and awareness-raising among agents
- Monitoring consumption and use of machinery and vehicles
- Communicating savings

Partners involved

• Training organisations, ground handling agents, airports

RE-MOTORISATION OF MACHINERY

Description

• Retrofitting involves replacing the combustion engine with an electric or hydrogen engine, while retaining the rest of the vehicle's infrastructure.

Benefits

- Cost savings compared with a new electric or hydrogen vehicle: only part of the engine needs changing, not the whole vehicle.
- Reductions in greenhouse gas emissions, linked to the electrification or conversion to hydrogen of the engine, and to the avoidance of emissions during the production of a complete new vehicle.
- Waste reduction: extending the lifespan of old thermal equipment by reusing it rather than scrapping or dismantling it.

Key success factors

- Technical feasibility of the retrofit
- Cost of retrofit (conversion + new engine), which must not be higher than a new solution

Partners involved

• Ground support equipment manufacturers, battery and fuel cell suppliers, maintenance workshops

REGENERATION OF LEAD BATTERIES

Description

- Over time and with repeated recharging cycles, the lead sulphate in batteries can crystallise and the plates can oxidise.
- The principle of battery regeneration involves sending controlled high-power electrical pulses, which gradually break down the crystalline network of lead sulphate and extend the life of the batteries by between 100% and 250%.

Benefits

- Doubling battery life
- Restoring original capacity
- Reducing electricity consumption
- Reduce breakdowns
- Reduce operating costs
- Reducing lead battery recycling waste

Key success factors

- Process reliability
- Fast processing

Partners involved

Ground handling, battery suppliers, maintenance workshops

4-ANNEXES

DETAILS OF TRACKSIDE EQUIPMENT FUNCTIONS NEW TECHNOLOGIES FOR RUNWAY EQUIPMENT

DETAILS OF THE FUNCTIONS OF NON-REGISTERED GROUND SUPPORT EQUIPMENT

Auxiliary power unit (GPU)

• Generates electricity for the aircraft, replacing the auxiliary power unit (APU)

Produces a stream of high-pressure air

to help start engines by replacing the

Baggage tractor

Loader platform

of aircraft

Transports baggage from the terminal to the aircraft on one or more trolleys

• Lifts cargo and containers into the hold

Crew/passenger bus

Provides a shuttle service between the aircraft and the terminal for passengers and crew

Heavy goods vehicles

Transport a trailer with several containers from the freight area to the aircraft

auxiliary power unit (APU)

Air starter unit (ASU)

Produces air-conditioned or heated air to power the aircraft, replacing the auxiliary power unit (APU).

De-icer

Allows glycol to be applied to the wings to de-ice aircraft before take-off in winter.

For transporting and lifting small

containers or pallets

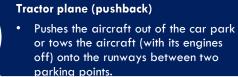
Water and waste truck

Empty the aircraft's waste water tanks or fill the aircraft's drinking water tanks

Truck for People with Reduced Mobility (PRM)

Provides access for people with reduced mobility from the tarmac to the aircraft door

Oléoserveur


Tanker

• Truck distributing fuel to aircraft by connecting them to the airport's underground fuel distribution network (hydrants)

• Truck distributing fuel to aircraft directly from an on-board tanker

Passenger staircases

Luggage mat

Allows passengers and crew to board or alight the aircraft if there are no gangways.

• Loads baggage directly into the hold

from the baggage tractor trolleys.

Loads and unloads trolleys for in-flight catering (meal trays)

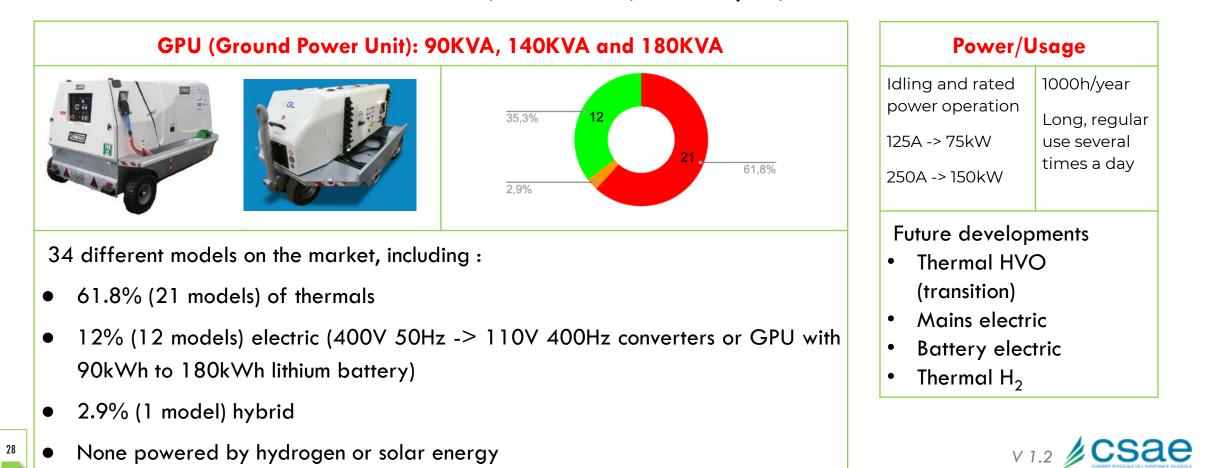
Pulls one or more containers on trolleys

from the terminal to the aircraft

Catering truck

Carrier

Forklift trucks




NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (1)

The figures quoted come from a study carried out in 2022 by 4 IENAC students from ENAC as part of a project proposed by CSAE. For each family, they studied the range from 16 international manufacturers and looked at the propulsion systems. **Colour code: RED thermal, GREEN electric, ORANGE hybrid, BLUE solar**

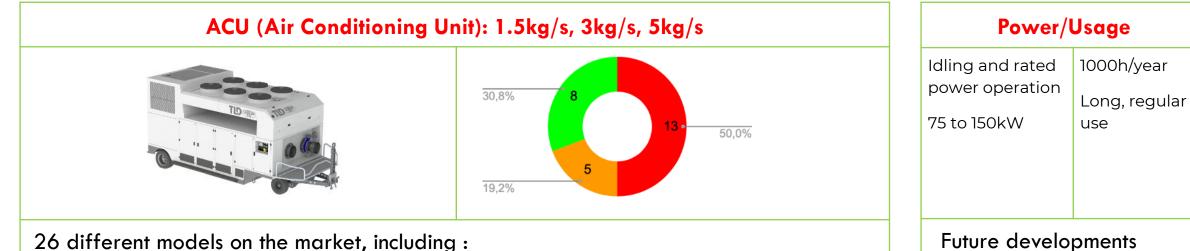
NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (2)

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

8 different models on the market, including :

- 87.5% (7 models) thermal
- 12.5% (1 model) electric (compressed air system and electric compressor)
- None hybrid, hydrogen (fuel cell) or battery electric
- Future developments: H combustion engine₂ and H fuel tank₂ Gas

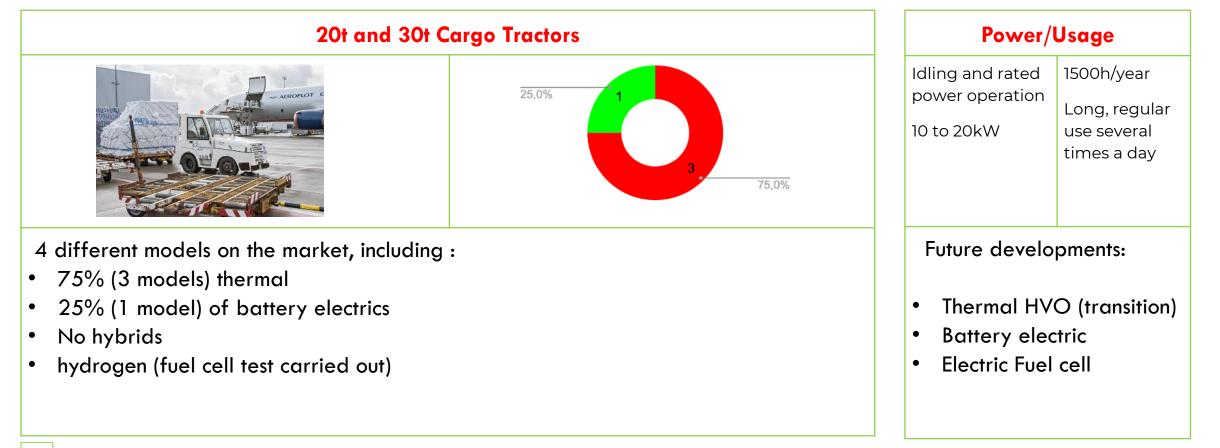
Power/Usage Idling and rated 50h/year power > 300kW Short, No electric model irregular uses Future developments Thermal HVO (transition) Thermal H₂



29

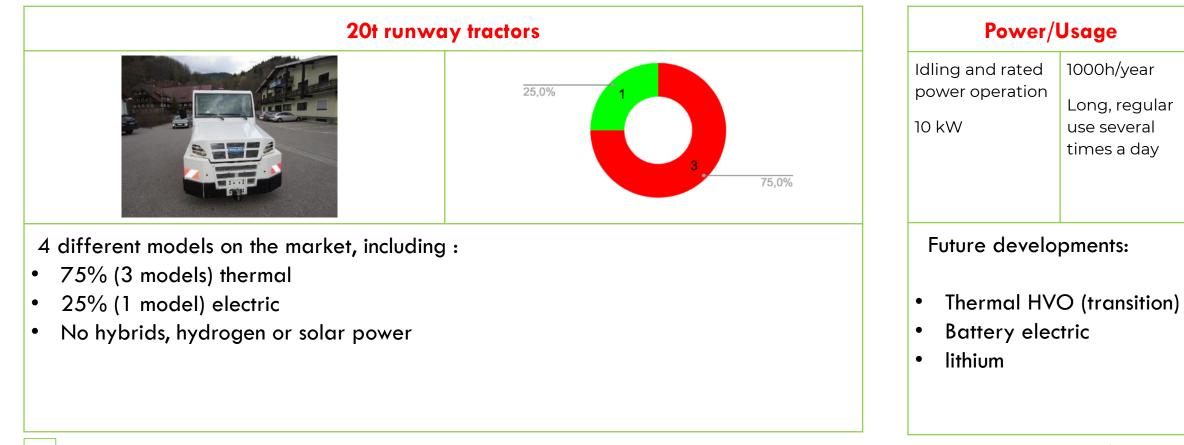
NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (3)

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar



- 50% (13 models) thermal
- 30.8% (8 models) electric (125A and 250A sockets)
- 19.2% (5 models) hybrids (combustion engine with generator to power an electric air conditioner with mains power)
- No hydrogen or battery electric

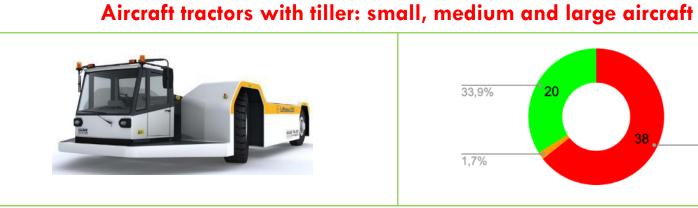
75 to 150kW use Future developments • Thermal HVO (transition) • Mains electric • 125A -> 75kW • 250A -> 150kW



NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (4)

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (5)

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (6)


- 11 different models on the market, including :
- 54.5% (6 models) electric (lead or lithium batteries)
- 45.5% (5 models) of thermals
- No hybrids, hydrogen or solar energy

Power/	Usage
Idling and rated power operation 10 kW	800h/year Long, regular use several times a day
Future developments: • Battery electric • Lead or lithium	

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (7)

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

59 different models on the market, including :

- 64.4% (38 models) of thermals ٠
- 33.9% (20 models) electric ٠
- 1.7% (1 model) hybrids (battery electric with combustion engine and electric ٠ generator)
- No hydrogen or solar energy ٠

Power/Usage		
Idling and rated power operation	800h/year to 1200h/year	
75 to 150 kW	Short, regular uses several times a day	
Future developments:		
 Thermal HVO (transition) Small push electric lithium battery Thermal H₂ big push 		

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (8)

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

23 different models on the market, including :

- 60.9% (14 models) of thermals
- 21.7% (5 models) electric
- 17.4% (4 models) hybrids (battery electric with combustion engine and electric generator)
- No hydrogen or solar energy

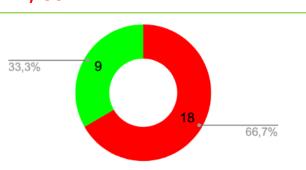
Power/Usage				
Idling and rated power operation	800h/year to 1200h/year			
75 to 150 kW	Short, regular uses several times a day			
Future developments				

- Future developments:
 Thermal HVO (transition)
- Small push electric lithium battery
- Thermal H₂ big push

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (9)

- 9 different models on the market, including :
- 66.7% (6 models) thermal
- 33.3% (3 models) electric
- No hybrids, hydrogen or solar power

Power/Usage		
Idling and rated power operation	800h/year to 1200h/year	
35 kW	Short, regular uses several times a day	
Future developments Thermal HVO (transition) Battery electric 		


NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (10)

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

27 different models on the market, including :

- 66.7% (18 models) of thermals
- 33.3% (9 models) electric
- No hybrids, hydrogen or solar power

Power/Usage		
Idling and rated power operation	800h/year to 1200h/year	
50 kW to 150kW	Short, regular uses several times a day	
 Future developments Thermal HVO (transition) Electric battery (3.5T, 7T) Thermal H₂ (14T, 35T 		

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (11)

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (12)

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

Passenger stairs

9,1% 5

54.5%

36,4%

55 different models on the market, including :

- 54.5% (30 models) of thermals
- 36.4% (20 models) battery electrics
- 9.1% (5 models) solar power
- No hybrids or hydrogen

Power/Usage

Idling and rated power operation	200h/year to 600h/year
20 kW to 35kW	Short, regular uses several times a day

Future developments

- Thermal HVO (transition)
- Battery electric for selfpropelled staircases
- Electric with battery and solar panels for towable staircases

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (13)

De-icers	Power/Usage
Cubin Gerrand	Idling and rated power operation100h/year to 300h/year75 kW to 150kWShort, irregular uses several times a day 6 months/year
 Various models are available on the market, including : Thermal: Industrial and commercial chassis Hybrids: Thermal chassis and electric battery functions Electric batteries 	Future developments • Thermal HVO (transition) • Battery electric • Thermal H ₂

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (14)

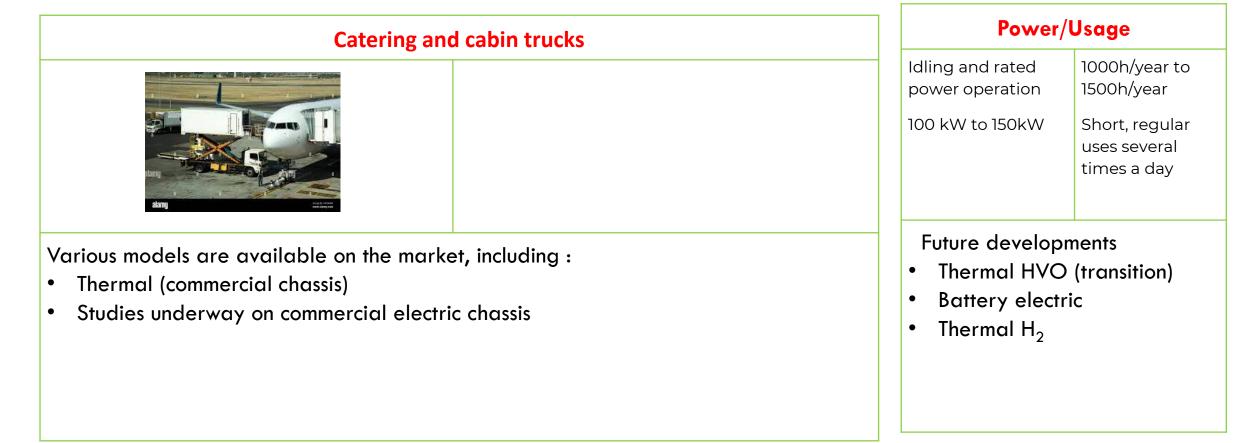
Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

Trucks for transporting people with reduced mobility (PRM)

Various models are available on the market, including :

- Thermal (industrial and commercial chassis)
- Battery-powered (industrial chassis)

Power/Usage


Idling and rated power operation	1000h/year to 1500h/year
50 kW to 100kW	Short, regular uses several times a day

Future developments

- Thermal HVO (transition)
- Battery electric (industrial chassis)
- Thermal H_2

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (15)

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (16)

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

Freight pallet trucks

Alternative solution:

Cargo tractor with pallet carriers

CF cargo tractor leaflet

Various models are available on the market, including :

- Thermal (commercial chassis), electric tri-pallets
- Studies underway on commercial electric chassis

Power/Usage

Idling and rated power operation	1000h/year to 1500h/year
100 kW to 150kW	Short, regular uses several times a day

Future developments

- Thermal HVO (transition)
- Battery electric
- Thermal H_2

•

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (17)

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

Aircraft service trucks (drinking water and toilets)

Various models are available on the market, including :

- Thermal (commercial and industrial chassis) ٠
- Electrical (commercial and industrial chassis) ٠

Power/	Usage
--------	-------

Idling and rated power operation	1000h/year to 1500h/year
50 kW to 100kW	Short, regular uses several times a day

Future developments

- Thermal HVO (transition) ٠
- **Electric batteries**
- Thermal H₂ ٠

•

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (18)

Passenger buses	Pc	ower/Usage
	Idling and rate power operati 50 kW to 100k	tion 1500h/year
 Various models are available on the market, including : Thermal (commercial and industrial chassis) Electric (commercial and industrial chassis) (lithium batteries from 120kWh to 400kWh) 	Thermal	2

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (16)

In addition to the apparatuses described above, others not included in the study deserve attention:

- **De-icers**: the first electric versions are arriving on the market and a world first has been put into operation at Clermont Ferrand Airport.
- Truck for transporting people with reduced mobility: similarly, helps are now available in an electric version. Examples are in service at CDG airport.
- Catering lorry: To date, there are no lorries other than the classic diesel lorries.

NEW TECHNOLOGIES FOR TRACKSIDE EQUIPMENT (17)

- Freight lorries (specific to Paris-CDG airport): these lorries are used in France only at Roissy CDG airport, and research carried out abroad shows that there is nothing similar elsewhere. This niche market would require the development of a specific electric truck, for which the current development costs for electric vehicles are not competitive with a dieselpowered solution.
- **Trackside buses**: electric buses already exist. Hydrogen-powered versions also exist, but their cost is currently too high.
- Trucks and servos for loading aircraft fuel: the first electric vehicles have been put into service

Version	Date	Nature of the review
1.0	23/03/2023	Creation
1.1	22/12/2023	Fleet and energy consumption updates
1.2	26/01/2024	Addition of the sections "The challenges of electricity pricing", "Cost-sharing models by type of energy", "Benchmark of electricity costs in France and Europe" and "Energy balances".

K

The .

1

