GROUND HANDLING & ENERGY TRANSITION

White Paper

V 1.0

About CSAE

The Chambre Syndicale des Assistants en Escale (CSAE) brings together companies providing ground handling services to airlines and their customers at French airports. It also represents companies with similar activities: training, rental and maintenance of ramp equipment, fuelling, passenger transport and consulting.

Its 22 members employ around 22,000 people in France.

CSAE is a member of the FNAM (French aviation industry federation).

Didier Montégut, President of CSAE

French ground handlers have been committed for over 10 years to the energy transition of their activities, in particular by electrifying their fleet of airport vehicles and ramp equipment.

The end of the health crisis has accelerated this transition by highlighting the importance of environmental issues in the expectations of our stakeholders (airlines, airports, authorities, etc.).

This guide is the result of more than a year of collective work within the CSAE's Environment Commission. Its aim is to highlight the progress of the energy transition of fleets, to set the 2030 and 2050 objectives and to promote good practices to be generalised.

The key word here is collaboration. On the one hand, collaboration with manufacturers on the development of an offer adapted to airport needs; on the other hand, collaboration with airports on the adaptation of the energy networks necessary to prepare for the arrival of these new technologies. All this with the support of the regulatory authorities to guarantee the economic sustainability of this transition, in a sector that is still too little known to the regulators.

Together we can make a difference and contribute to reducing the environmental footprint of the aviation sector.

Enjoy your reading

SUMMARY

SUMMARY	1 - THE STATE OF PLAY	2 - THE OBJECTIVES	3 - GOOD PRACTICE	4 - ANNEXES
Ground handlers, key players in the decarbonisation of ground operations	 Fleets of ramp equipment Energy consumption New energies New technologies 	 Energy transition Reduction of emissions Conditions for achieving these objectives 	 Alternative means to APU* Electric charging infrastructure Eco-driving Re-motorisation of ramp equipement 	 Details of the functions of the ramp equipment New technologies

Regeneration of lead batteries

CSae

4

SUMMARY GROUND HANDLERS, KEY PLAYERS IN THE DECARBONISATION OF GROUND OPERATIONS

Findings: An energy transition already underway by ground handlers

- CSAE's ground handlers operate over **3,500 unregistered vehicles and ramp equipment** required to handle passengers and aircraft on the ground (approximately 50% of the total airport fleet).
- The greening of fleets has so far focused on low-powered vehicles and equipment and on mainly electric solutions. Approximately 40% of the fleet in operation today is clean (electric, hybrid, gas).
- The objectives are to reduce direct CO₂ emissions by 20% in 2030 (baseline 2019) and to reach net zero emissions (direct and indirect) in 2050.

Solutions : Heterogeneous technological maturities to be reinforced

- In the short term, facilitate the use of already mature electric and gas technologies through aid-to-purchase mechanisms, significant and coordinated energy supply infrastructure investment programmes, and energy cost incentives, as is the case elsewhere in Europe.
 Transitional solutions with HVO (hydrotreated vegetable oil), compatible with diesel engines, should also be considered.
- In the medium and long term, develop research into solutions for high-powered machines such as long-haul aircraft tractors (in particular thanks to hydrogen), making it possible to limit emissions when aircraft are taxiing.

Challenge: How to accelerate this transition in a multi-stakeholder context?

Ground handlers need to respond to the demands of airlines and airports by accelerating decarbonisation, particularly of high-powered vehicles and equipment, through new solutions that are economically and environmentally sustainable, while working with airports on the development of the most appropriate energy supply infrastructure.

1-THE STATE OF PLAY

FLEET OF RAMP EQUIPMENT ENERGY CONSUMPTION NEW ENERGIES NEW TECHNOLOGIES

FLEETS OF RAMP EQUIPMENT

Fleet of non-road unregistered ground support equipment (GSE) operated in France in 2021 by 11 respondent companies (i.e. over 90% of the CSAE fleet, excluding the Air France fleet and airports)

GSE	Nu	mber of GSE per ene	ergy	Total number of	Number of	Share of "clean"
	Electric	CNG / Hybrid	Thermal	GSE	"clean*3 GSE	equipment*.
LUGGAGE TRACTOR	1094	10	98	1202	1 104	92 %
LUGGAGE BELT	171	-	336	507	171	34 %
AIR COND. UNIT	-	4	19	23	4	17 %
FORKLIFT TRUCK	4	2	55	61	6	10 %
BUS	-	3	69	72	3	4 %
AIRCRAFT TRACTOR	8	-	229	237	8	3 %
PRM TRUCK	1	-	34	35	1	3 %
GPU	5	-	261	266	5	2 %
LOADER	3	1	220	224	4	2 %
PASSENGER STAIRS	1	-	211	212	1	0,5 %
CATERING TRUCK	-	-	89	89	-	-
WATER PUMPING TRUCK	-	-	25	25	-	-
HGV TRUCK	-	-	137	137	-	-
TRANSPORTER	-	-	50	50	-	-
ΤΑΝΚ	-	-	4	4	-	-
REFUELING TRUCK	-	-	31	31	-	-
AIR START UNIT	-	-	33	33	-	-
DEICEING TRUCK	-	-	19	19	-	-
TOTAL	1 287	20	1 920	3 227	1 307	41%

ENERGY CONSUMPTION

8

Consumption of non-road unregistered ground support equipment operated in France in 2021 by 11 respondent companies (i.e. over 90% of the CSAE fleet, excluding the Air France fleet and airports)

Machines	RNG fuel consumption (Litres)	Share of fuel consumption	Average electricity consumption per machine per hour of operation in kWh/h
GPU	1 438 679	23 %	30
AIRCRAFT TRACTOR	1 127 352	18 %	40
TRUCK FREIGHT	969 135	15 %	23
LUGGAGE BELT	849 077	13 %	4
CATERING TRUCK	388 676	6 %	18
LOADER	339 220	5 %	12
BUS	303 863	5 %	13
LUGGAGE TRACTOR	184 086	3 %	6
MINIBUS / SHUTTLE	183 878	3 %	10
REFUELING TRUCK	127 434	2 %	12
PRM TRUCK	119 986	2 %	15
STAIRS	89 563	1 %	3
TRANSPORTER	82 1 27	1 %	8
ACU	64 927	1 %	60
ASU	43 910	1 %	NA
FORKLIFT TRUCK	37 345	1 %	5
DEICEING TRUCK	18 240	0,3 %	NA
ΤΑΝΚ	6 038	0,1 %	NA
WATER/DRAINAGE TRUCK	2 500	0,04 %	10
Grand total	6 376 036 L		

NEW ENERGIES - SOURCES

Airport vehicle and equipment (AVE) fleets will gradually move towards renewable energy

Energy sources	Energy produced	Final consumption
Electricity : • Wind & Solar • Nuclear • Hydro & Geothermal	ELECTRICITY HYDROGEN (electrolysis)	Electricity Hydrogen
		HVO**
Methane (CO capture) ₂ CO ₂ + electricity + H ₂ Vegetable oils/Animal fats	HYDROGEN (chemistry) FAS/Fuel EMAG*/HVO**	CNG*** efuel/SAF
Biomass	BIOGAS/H ₂ (thermolysis)	

*Fatty acid methyl esters / ** Hydrotreated vegetable oil / *** Natural gas for vehicles

Airports will need to secure energy supplies according to :

- Local renewable energy sources and production capacities
 - Distribution networks near or at airports
 - Prices of different energies

NEW ENERGIES - COSTS

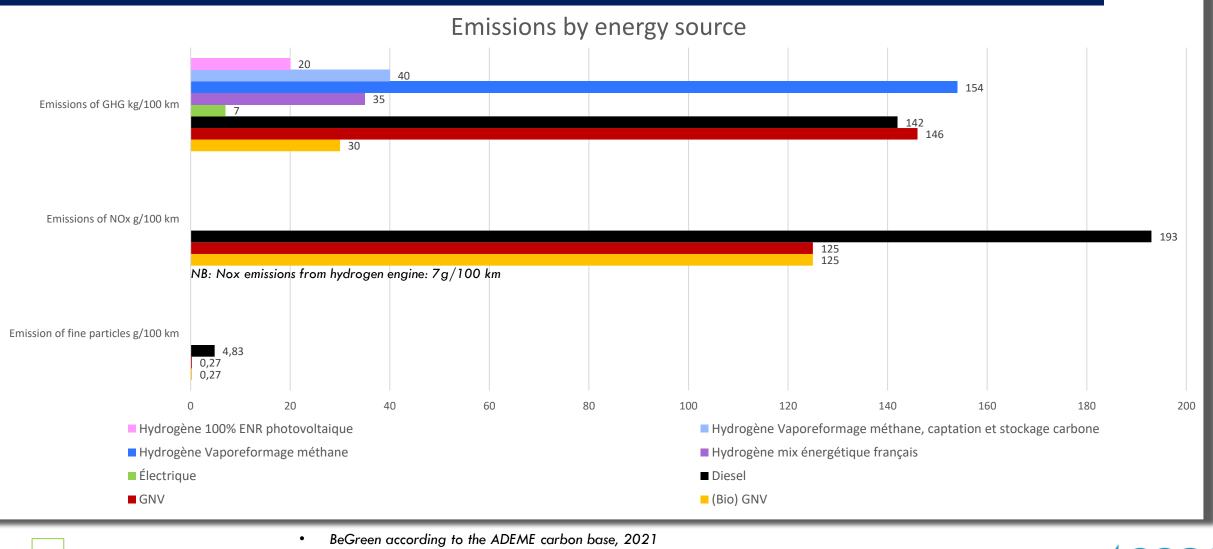
Diesel

- Type of fuels considered :
 - Fossil: Diesel B7 or off-road diesel
 - bio-fuel: HVO
- Off-road diesel: 1.30€/I (tax free) until 31/12/2023
- Diesel B7: 2€/I (taxed)
- HVO: 2.1€/I (tax free)
- Carbon neutrality will be achieved through the use of HVO from January 2024 (probable cessation of off-road diesel)

Electricity

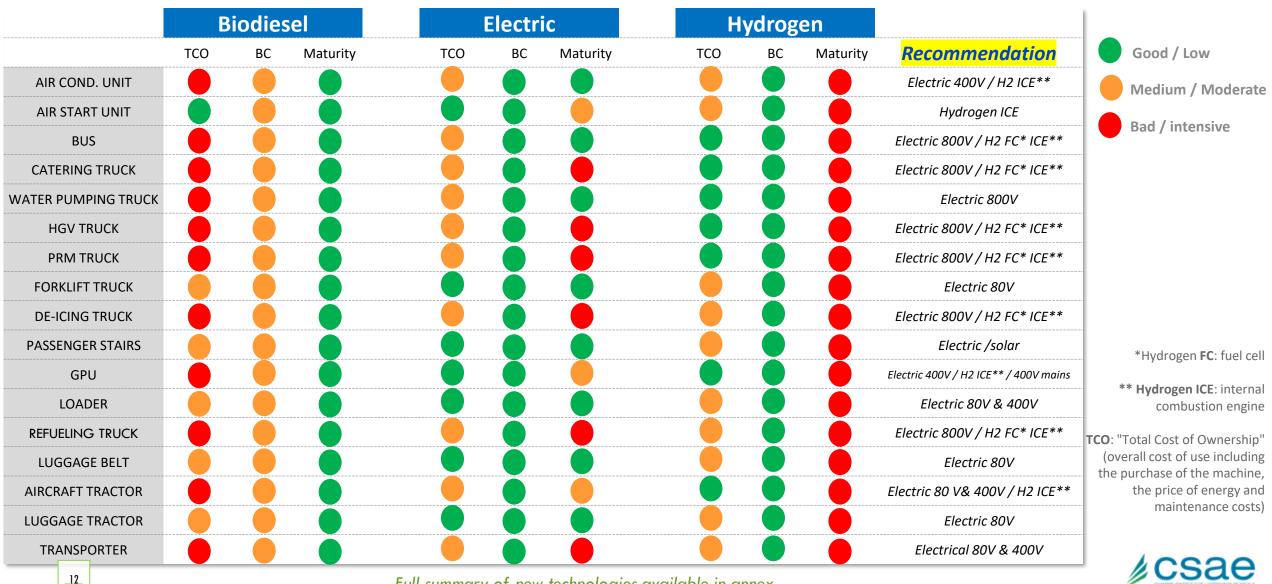
- Cost of low-carbon electricity as a function of production costs :
- Geothermal energy: 45€ /MWh
- Hydroelectricity: 20€/MWh
- Onshore wind: 60€ /MWh
- Offshore Wind: 150€/MWh
- Photovoltaic: 75€ /MWh
- Historic nuclear: 50€ /MWh
- Nuclear EPR2 or SMR: 100€ /MWh
- Cost of low-carbon electricity based on a mix produced in France: less than 100€ /MWh
- A selling price of electricity on airport platforms at €350/MWh would make it possible to accelerate the electrification of airports and to finance the electrical infrastructure by the price differential between the purchase price and the selling price alone

Hydrogen


- Cost of hydrogen gas :
 - Electrolysis using electricity from renewable sources: between €6 and €12 per kilogram
 - Steam reforming of methane with carbon capture: between €3 and €4 per kilogram
 - Thermolysis of biomass: €9 per kilogram

Source: AFHYPAC, Hydrogen Handbook, sheet 3.1.1

NEW ENERGIES - EMISSIONS


Data source :

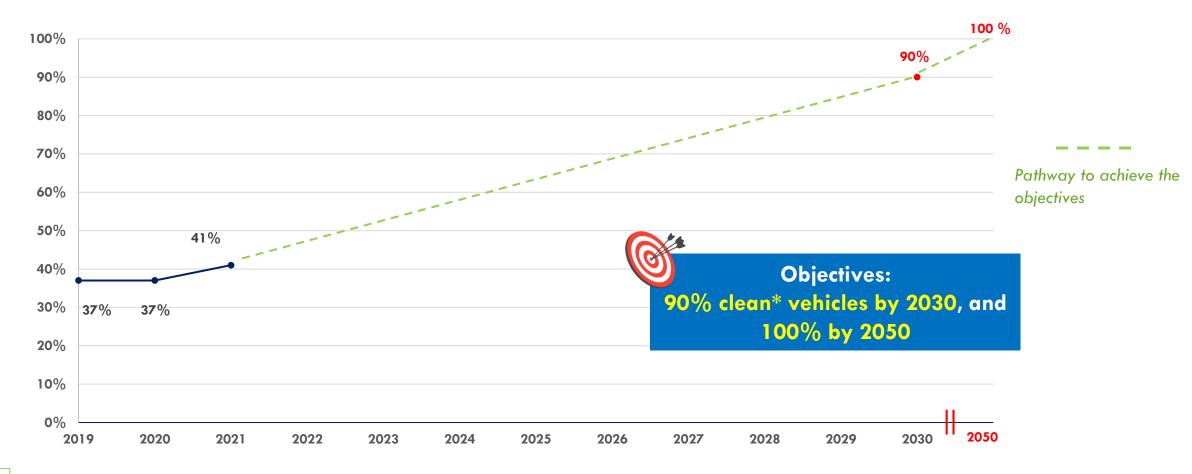
11

- ADEME, Impact climatique de l'hydrogène bleu, 2022
- France Hydrogène, Mémento de l'hydrogène, fiche 5.1.1, 2021 ٠

NEW TECHNOLOGIES OF RAMP EQUIPMENT AND ENERGY AVAILABLE (SUMMARY)

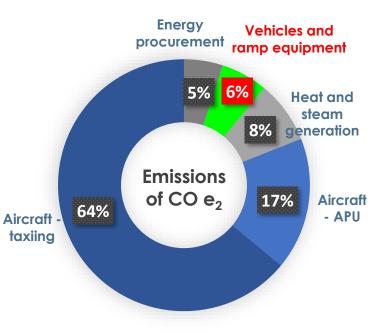
Full summary of new technologies available in annex

2-THE OBJECTIVES


ENERGY TRANSITION OF FLEETS REDUCTION OF EMISSIONS CONDITIONS FOR ACHIEVING THESE OBJECTIVES

ENERGY TRANSITION OF FLEETS

Evolution of the share of clean* ramp equipment since 2019 and 2030/2050 targets



14

REDUCTION OF EMISSIONS

- In the overall emissions balance of an airport hub, ramp vehicles and equipment accounted for :
 - Greenhouse gases: 6% of carbon dioxide emissions (CO₂), i.e. more than 21,000 tonnes of CO₂ equivalent.
 - Air quality: 5% of nitrogen oxide (NOx) emissions
- In 2021, greenhouse gas emissions from fuel combustion for runway equipment were 16,663 tonnes of CO₂ eq.

Objectives: Reduce direct CO₂ emissions by 20% in 2030 (baseline 2019) Achieving net zero emissions (direct and indirect) by 2050 CO₂ eq. emissions from vehicles and ground support equipment represent 6% of airport emissions

Source: ADEME, 2018, Breakdown of CO₂ equivalent emissions by emission item (11 aerodromes)

CONDITIONS FOR ACHIEVING THESE OBJECTIVES

- 1. Support for investment capacity for the renewal of ground handling fleets for the adaptation of airport infrastructures
 - 2. Visibility on the deployment of electric (with associated power and surface area), gas or hydrogen recharging infrastructures at airports
 - **3.** Sharing of infrastructure deployment costs (chargers, distribution networks) and energy with airports and airlines

3-GOOD PRACTICE

ALTERNATIVE MEANS OF TRANSPORT TO THE APU ELECTRIC CHARGING INFRASTRUCTURE ECO-DRIVING RE-ENGINEERING OF VEHICLES REGENERATION OF LEAD BATTERIES

ALTERNATIVE MEANS TO APU*

Description

- Reminder of the role of an APU: provides electricity, heating and air conditioning when the aircraft's main engines are shut down (passenger embarkation and disembarkation, cleaning, maintenance, flight preparation, etc). Also required for starting the main engines.
- Fixed alternatives to the APU (to be preferred): 400 Hz cable, PCA (Pre-Conditioned Air). These means are made available by the airports.
- Mobile substitutes (in case of non-operation of fixed installations): GPU (Ground Power Unit) thermal, GPU battery, converter, ACU (Air Conditioning Unit), ASU (Air Strat Unit). These resources are made available by the ground handlers.

Benefits

- Reduction of fuel consumption, resulting in lower greenhouse gas emissions, local pollutants and costs for airlines and assistants.
- Reduction of aeroplane space in the case of fixed substitutes and noise.

Key success factors

- Availability of alternative fixed infrastructure on contact and offshore aircraft (power, distribution network)
- Investment capacity of assistants and airports

Partners involved

• Airports, airlines, ground handlers

ELECTRIC CHARGING INFRASTRUCTURE

Description

- Solution A: Installation of a small number of high-density (63A-125A) multi-voltage multi-capacity fast chargers: this type of charger allows different batteries to be charged on the same day and automatically adjusts its rating to the battery according to its state of charge. The charge lasts between 30 minutes and 3 hours. These chargers are particularly suitable for machines requiring high power such as aircraft tractors, loaders or GPUs. For this type of charger, approximately 1 charger for 4 machines can be installed. The prerequisite for this solution is to have the same power available at the airport, as well as the same plug connection standard (Euro CCS2 standard).
- Solution B: Installation of a large number of low-current, slow-charge chargers (16A-32A) dedicated to charging a single type of battery: this type of charger requires less power but more space to install the chargers. It leaves the possibility to leave the vehicles in charge during the whole period of inactivity (at night for example) for a complete charge between 8 and 15 hours. This type of charger is suitable for lowpowered machines, such as baggage tractors or carpets. For this type of charger, approximately 1 charger for 2 machines can be installed. This solution is currently the easiest to implement and the most widespread at airports, but will have limitations for the electrification of the most powerful ramp vehicles (buses, aircraft tractors, etc.).
- Solution C: installation of on-board chargers directly on the electric vehicles, which allow the vehicles to be connected to an irregular network (voltage or power variation). The same vehicle can therefore be connected to different types of socket, depending on the one available nearby when its battery is low, for example. This solution involves an additional cost to add the charger to the price of the machine.
 - A mix of these solutions, in consultation with the airports, should be considered in order to find the best match between the assistants' investment plan and the electrical capacity that the airport can offer.

Benefits

Reduction of fuel consumption, greenhouse gas emissions and local pollutants for assistants

Key success factors

- Availability of space and electrical capacity at competitive energy costs
- Standardisation of connection standards (OCPP2.0 standard)

Partners involved

Airports, ground handlers, electricity suppliers

ECO-DRIVING

Description

- Eco-driving module integrated into the training of ramp agents, at the same time as the training on driving machines.
- Training content: speed modulation and obstacle anticipation, smooth driving, encouraging the driver to turn off the ignition when stationary.

Benefits

- Reduction of fuel consumption, greenhouse gas emissions and local pollutants for the assistants.
- Improved runway safety on aprons.
- Reduced wear and tear on vehicles and machinery.

Key success factors

- Frequent involvement and awareness-raising of staff
- Monitoring of consumption and use of machinery and vehicles
- Communication of savings

Partners involved

• Training organisations, ground handlers, airports

RE-MOTORISATION OF GROUND SUPPORT EQUIPMENT

Description

 Retrofitting consists of replacing the combustion engine with an electric or hydrogen engine, while retaining the rest of the vehicle's infrastructure.

Benefits

- Cost reduction compared to a new electric or hydrogen vehicle: only the engine part has to be changed, not the whole vehicle.
- Reductions in greenhouse gas emissions, related to the electrification or conversion to hydrogen of the engine, and emission avoidance in the production of a complete new vehicle.
- Waste reduction: extending the life of an old thermal engine that will be reused rather than scrapped or dismantled.

Key success factors

- Technical feasibility of the retrofit
- Cost of retrofit (conversion + new engine), which should not be higher than a new solution

Partners involved

 Ground support equipment manufacturers, battery and fuel cell suppliers, maintenance workshops

REGENERATION OF LEAD BATTERIES

Description

- Over time and with repeated recharging cycles, the lead sulphate in batteries can crystallise and its plates can oxidise.
- The principle of battery regeneration is to send controlled high-power electrical pulses that gradually break down the lead sulphate crystal lattice and increase the life of the batteries by 100% to 250%.

Benefits

- Doubling the life of batteries
- Recovering the original capacity
- Reduce power consumption
- Reducing breakdowns
- Reduce operating costs
- Reducing lead battery recycling waste

Key success factors

- Process reliability
- Speed of processing

Partners involved

Ground handling, battery suppliers, maintenance workshops

4-ANNEXES

DETAILS OF THE FUNCTIONS OF THE RAMP EQUIPMENT

NEW TECHNOLOGIES

DETAILS OF THE FUNCTIONS OF NON-REGISTERED RAMP EQUIPMENT

Ground Power Unit (GPU)

• Generates electricity for the aircraft by replacing the auxiliary power unit (APU)

Produces a high pressure airflow to

auxiliary power unit (APU)

assist engine starting in place of the

Luggage tractor

Lift platform (loader)

cargo hold of aircraft

Carries luggage from the terminal to the aircraft on one or more trolleys

• Lifts cargo and containers into the

Crew/passenger bus

Provides a shuttle service between the aircraft and the terminal for passengers and crew

Heavy duty freight truck

Transport a trailer with several containers from the cargo area to the aircraft

Air Start Unit (ASU)

Produces air-conditioned or heated air to power the aircraft in place of the auxiliary power unit (APU)

De-icer

Allows glycol to be applied to the wings to de-ice aircraft before take-off in winter

Water and waste truck

Empty the aircraft's waste water tanks or fill the aircraft's drinking water tanks

Truck for People with Reduced Mobility

Allows access for people with reduced mobility from the tarmac to the aircraft door

Oleoserver

Tanker

• Truck distributing fuel to aircraft by connecting them to the airport's underground fuel distribution network (hydrants)

• Truck delivering fuel to aircraft directly from an on-board tanker

engines off) onto the runways between two parking points

Passenger stairs

• Allows passengers and crew to board or disembark the aircraft if there are no gangways

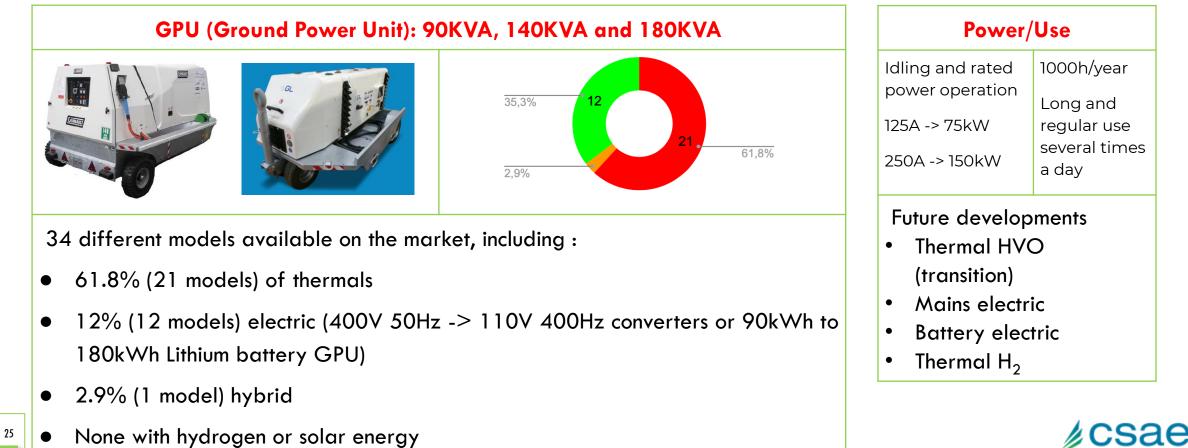
Catering truck

Forklift truck

Loads and unloads trolleys related to inflight catering (meal trays)

• Loads luggage directly into the hold from the luggage tractor trolleys.

Carrier


Allows the transport and lifting of small containers or pallets

NEW TECHNOLOGIES FOR GSE (1)

The figures quoted are from a study carried out in 2022 by 4 IENAC students from ENAC in the framework of a project proposed by CSAE.

For each family they studied the offer from 16 international manufacturers and looked at the propulsion modes.

NEW TECHNOLOGIES FOR GSE (2)

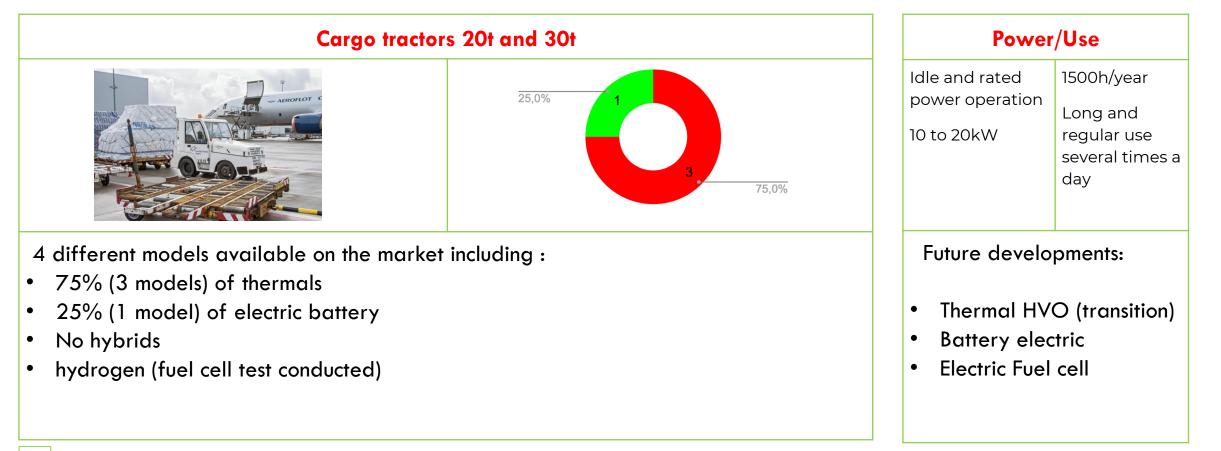
Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

8 different models available on the market including :

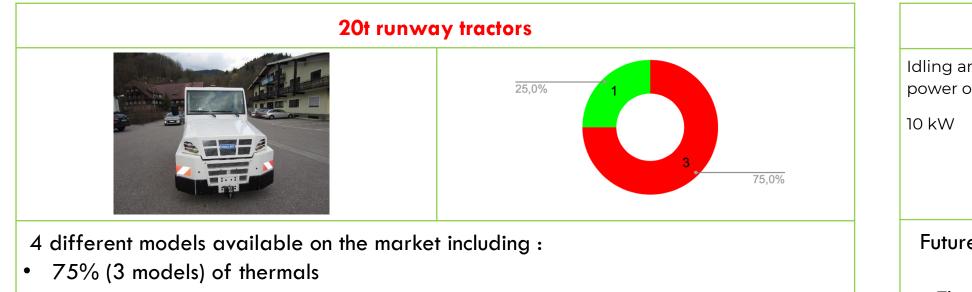
- 87.5% (7 models) of thermals
- 12.5% (1 model) electric (compressed air system and electric compressor)
- No hybrid, hydrogen (fuel cell) or battery electric
- Future developments: H-engine₂ and H-tank₂ Gas

Power/Use				
Idling and rated power > 300kW No electric model	50h/year Short, non- regular uses			
 Future developme Thermal HVO (transition) Thermal H₂ 	ents			

NEW TECHNOLOGIES FOR GSE (3)


- 50% (13 models) of thermals
- 30.8% (8 models) of electrics (125A and 250A sockets)
- 19.2% (5 models) of hybrids (internal combustion engine with generator to power an electric air conditioner with mains power)
- No hydrogen or battery electric

- Thermal HVO (transition)
- Mains electric
- 125A -> 75kW
- 250A -> 150kW


NEW TECHNOLOGIES FOR GSE (4)

NEW TECHNOLOGIES FOR GSE (5)

- 25% (1 model) of electric
- No hybrids, hydrogen or solar energy

Power/Use		
Idling and rated power operation 10 kW	1000h/year Long and regular use several times a day	
Future develo • Thermal HV • Battery elec • lithium	O (transition)	

NEW TECHNOLOGIES FOR GSE (6)

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

11 different models are available on the market, including :

- 54.5% (6 models) electric (lead or lithium batteries)
- 45.5% (5 models) of thermals
- No hybrids, hydrogen or solar energy

Power	/Use
Idle and rated power operation 10 kW	800h/year Long and regular use several times a day
Future develo Battery elect Lead or lithit 	tric

NEW TECHNOLOGIES FOR GSE (7)

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

59 different models available on the market, including :

- 64.4% (38 models) of thermals
- 33.9% (20 models) electric
- 1.7% (1 model) hybrids (battery electric with combustion engine and electric generator)
- No hydrogen or solar energy

Power/Use		
Idle and rated power operation	800h/year to 1200h/year	
75 to 150 kW	Short and regular use several times a day	
 Future develo Thermal HV Electric lithiu 	O (transition)	

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

23 different models available on the market including :

- 60.9% (14 models) of thermals
- 21.7% (5 models) electric
- 17.4% (4 models) of hybrids (battery electric with combustion engine and electric generator)
- No hydrogen or solar energy

Power/Use		
Idle and rated power operation	800h/year to 1200h/year	
75 to 150 kW	Short and regular use several times a day	

Future developments:

- Thermal HVO (transition)
- Electric lithium battery small push
- Thermal H₂ big push

NEW TECHNOLOGIES FOR GSE (9)

- 9 different models available on the market including :
- 66.7% (6 models) of thermals
- 33.3% (3 models) electric
- No hybrids, hydrogen or solar energy

Power/Use		
Idle and rated power operation	800h/year to 1200h/year	
35 kW	Short and regular use several times a day	

- Future developments
- Thermal HVO (transition)
- Battery electric

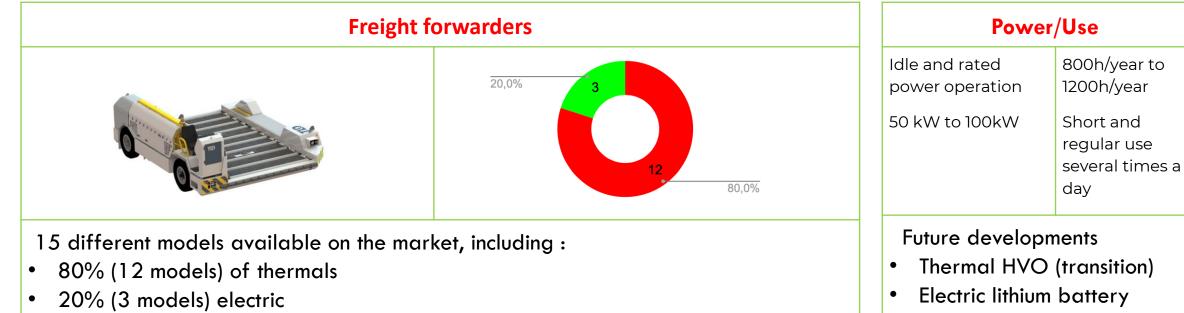
NEW TECHNOLOGIES FOR GSE (10)

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

27 different models available on the market, including :

- 66.7% (18 models) of thermals
- 33.3% (9 models) electric
- No hybrids, hydrogen or solar energy

Power/Use		
Idle and rated power operation	800h/year to 1200h/year	
50 kW to 150kW	Short and regular use several times a day	
Future develo	pments	

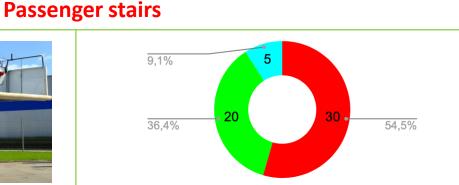

66.7%

- Thermal HVO (transition)
- Electric battery (3.5T, 7T)
- Thermal H₂ (14T, 35T

NEW TECHNOLOGIES FOR GSE (11)

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

• Thermal H_2



Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

55 different models available on the market, including :

- 54.5% (30 models) of thermals
- 36.4% (20 models) of battery electrics
- 9.1% (5 models) of solar
- No hybrids or hydrogen

Power/UseIdle and rated
power operation200h/year to
600h/year20 kW to 35kWShort and
regular use
several times a
day

Future developments

- Thermal HVO (transition)
- Battery electrics for selfpropelled staircases
- Electric with battery and solar panels for towable stairs

NEW TECHNOLOGIES FOR GSE (13)

De-icers	Power/Use	Power/Use	
Cerhom Eprrand	Idle and rated power operation100h/year to 300h/year75 kW to 150kWShort, non- regular uses several times day 6 months/year	s a	
 Various models are available on the market, including : Thermal: Industrial and commercial chassis Hybrids: Thermal chassis and electric battery functionality Electric batteries 	Future developments • Thermal HVO (transition) • Battery electric • Thermal H ₂		

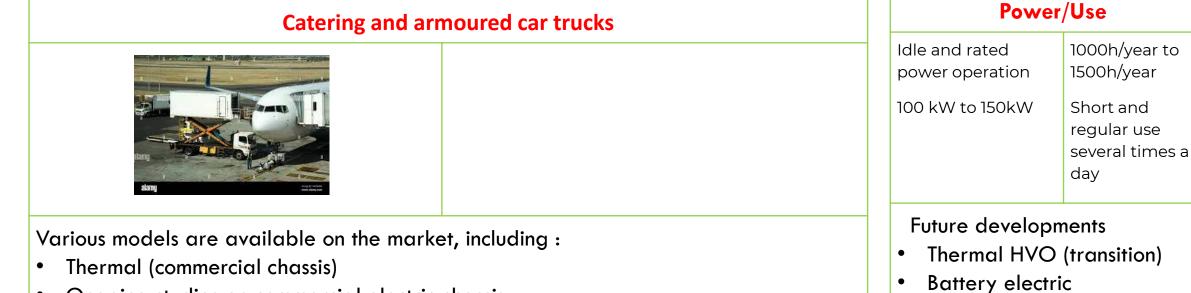
Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

Trucks for the transport of people with reduced mobility

Various models are available on the market, including :

- Thermal (industrial and commercial chassis)
- Battery operated electrics (industrial chassis)

Power/Use			
Idle and rated power operation	1000h/year to 1500h/year		
50 kW to 100kW	Short and regular use several times a day		


Future developments

- Thermal HVO (transition)
- Battery electric (industrial chassis)
- Thermal H_2

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

• Ongoing studies on commercial electric chassis

• Thermal H_2

NEW TECHNOLOGIES FOR GSE (16)

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

Pallet cargo trucks	
Alternative solution:Cargo tractor with pallet carriersCF sheet cargo tractors	

Various models are available on the market, including :

- Thermal (commercial chassis), electric tri-pallet
- Ongoing studies on commercial electric chassis

Power/Use

Idle and rated power operation	1000h/year to 1500h/year
100 kW to 150kW	Short and regular use several times a day

Future developments

- Thermal HVO (transition)
- Battery electric
- Thermal H_2

٠

NEW TECHNOLOGIES FOR GSE (17)

Colour code: **RED** thermal, **GREEN** electric, **ORANGE** hybrid, **BLUE** solar

Aircraft Service Trucks (Drinking Water and Toilet Emptying)

Various models are available on the market, including :

- Thermal (commercial and industrial chassis)
- Electrical (commercial and industrial chassis)

Power/Use		
Idle and rated	1000h/year to	
power operation	1500h/year	

50 kW to 100kW s

1500h/year Short and regular use several times a day

Future developments

- Thermal HVO (transition)
- Electric batteries
- Thermal H_2

NEW TECHNOLOGIES FOR GSE (18)

Passenger buses	Powe	Power/Use	
 Various models are available on the market, including : Thermal (commercial and industrial chassis) Electrics (commercial and industrial chassis) (lithium batteries from 120kWh to 400kWh) 	Idle and rated power operation 50 kW to 100kW Future develop • Thermal HVC • Electric batte • Electrics H ₂ • Thermal H ₂	1000h/year to 1500h/year Long and regular use several times a day	

NEW TECHNOLOGIES FOR GSE (19)

Beyond the apparatuses described above, others not included in the study deserve attention:

- **De-icers:** the first electric versions are coming on the market and a world first has been put into operation at Clermont Ferrand Airport
- Truck for transporting people with reduced mobility: similarly, helps are now available in an electric version. Examples are in service at CDG airport.
- Catering truck: To date there are no other trucks than the classic diesel trucks

NEW TECHNOLOGIES FOR GSE (20)

- Freight truck (specific to Paris-CDG airport): these trucks are used in France only at Roissy CDG airport and research done abroad shows that there is nothing similar elsewhere. This niche market would require the development of a specific electric truck, the development costs of which are currently not competitive with a diesel-powered solution.
- **Ramp buses**: electric buses already exist. Hydrogen versions also exist, but their cost is currently too high
- Trucks and aircraft fuel services: the first electric vehicles have been put into service

Version	Date	Nature of the review
1.0	23/03/2023	Creation

